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Reducing Outgoing Traffic of Proxy Cache by Using
Client-Cluster

Kyungbaek Kim and Daeyeon Park

Abstract: Many web cache systems and policies concerning them
have been proposed. These studies, however, consider large ob-
jects less useful than small objects in terms of performance, and
evict them as soon as possible. Even if this approach increases the
hit rate, the byte hit rate decreases and the connections occurring
over congested links to outside networks waste more bandwidth in
obtaining large objects. This paper puts forth a client-cluster ap-
proach for improving the web cache system. The client-cluster is
composed of the residual resources of clients and utilizes them as
exclusive storage for large objects. This proposed system achieves
not only a high hit rate but also a high byte hit rate, while re-
ducing outgoing traffic. The distributed hash table (DHT) based
peer-to-peer lookup protocol is utilized to manage the client-cluster.
With the natural characteristics of this protocol, the proposed sys-
tem with the client-cluster is self-organizing, fault-tolerant, well-
balanced, and scalable. Additionally, the large objects are managed
with an index based allocation method, which balances the loads of
all clients well. The performance of the cache system is examined
via a trace driven simulation and an effective enhancement of the
proxy cache performance is demonstrated.

Index Terms: Client-cluster, peer-to-peer, replacement algorithm,
web caching.

I. INTRODUCTION

The recent increase in popularity of the World Wide Web has
led to a considerable increase in the amount of Internet traffic.
As a result, web caching has become an increasingly impor-
tant issue. Web caching aims to reduce network traffic, server
loads, and user-perceived retrieval delays by replicating popular
content on caches strategically placed within the network. Web
caches are often deployed by institutions (corporations, univer-
sities, and ISPs) to reduce traffic on access links between the
institution and its upstream ISP.

By caching requests for a group of users, a web proxy cache
can quickly return objects previously accessed by other clients.
As a proxy cache handles a greater number of requests by
clients, it can further reduce network traffic and response de-
lays. Though a proxy cache tries to handle as many requests
as possible, the storage of a proxy cache is limited and it can
not store all of requested objects in its local storage. If a proxy
cache is full and needs space for new objects, it evicts the other
objects which are not useful for cache performance; this is the
replacement policy of a web proxy cache [1]–[5]. Generally,
these policies evict least recently used objects and large objects
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first. According to this behavior, a proxy cache obtains more
small objects, achieves a higher hit rate and reduces more ac-
cess links between an institution and its upstream ISP.

A proxy cache with these policies either stores large objects
for little time or does not obtain them. This means that it has
less of a chance to further reduce the outgoing traffic for the
large objects. Due to this, though these policies increase the hit
rate, they decrease the byte hit rate, which is the number of bytes
that hit in the proxy cache as a percentage of the total number
of bytes requested. This degradation in the byte hit rate causes
more outgoing traffic of a proxy cache even if it handles more
requests for small objects. As is the case for the web proxy
cache, it is assumed that an intra-community file transfers occur
at relatively faster rates, whereas file transfers into the commu-
nity occur at relatively slower rates. As an example, the com-
munity may be a university or corporate campus, with tens of
thousands of peers in the campus community interconnected by
high speed LANs, but with connections to the outside world oc-
curring over congested campus access links. Consequently, if
the proxy cache wastes more outgoing traffic, the connections
to the outside become more congested and the response delay
for a request increases.

To prevent this degradation, it is necessary to store large
objects and maximize chances of hitting these objects. As a
naive approach, a proxy cache simply increases its local stor-
age. However this approach is only a temporary solution and
continues to be affected by the general replacement policies.
For this reason, exclusive storage for large objects is needed.
The content delivery network (CDN) services can be utilized for
this purpose; however, these services are expensive. Moreover,
these approaches incur high administrative costs owing to the
the frequent variation of clients. For example, a growth in client
population necessitates increasing the storage and updating the
system information.

In this paper, a new web proxy cache system that uses the
residual resources of clients is suggested. Essentially, a web
proxy cache stores only small objects, and the resources of
clients are used to store only large objects. This separation of
storage causes a proxy cache to store a greater number of small
objects, as it does not need to store any large objects. The large
objects are stored in an exclusive storage area which is supplied
by clients; this is termed the client-cluster. According to this
action, a proxy cache maintains or improves its performance,
through such parameters as the hit rate, as well as the byte hit
rate, the response delay and the usage of the outgoing band-
width. Furthermore, the size of the exclusive storage increases
as more clients use the proxy cache, reducing the administrative
cost and allowing the proxy cache to be more scalable.

The client-cluster is composed of the client’s residual re-
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sources. As clients join and leave dynamically, in order to use
its storage efficiently, the client-cluster must be self-organizing
and fault tolerant and the load of each client should be balanced.
To cope with these requirements, the client-cluster is managed
using the distributed hash table (DHT) based peer-to-peer proto-
col. By using this protocol, all clients receive a nearly identical
load, as the hash function balances the load with a high prob-
ability. Moreover, the proxy cache does not need to manage
information about these clients and administrative costs can be
saved.

This protocol matches an object with a client. When storing
large objects in the client-cluster, it is difficult, as well as unfair
to a single client, for that client to store the entire large object.
Therefore, the large object is then broken into many smaller
blocks and these blocks are stored with many clients by using
the index based allocation method. All of the blocks are dis-
tributed in the client-cluster and the storage overhead for each
client is reduced as well as balanced. However, when a proxy
cache sends requests to a client-cluster and the requested objects
are not stored in that client-cluster, the proxy cache takes on ad-
ditional latency. To prevent this latency, a cache summary with
a Bloom filter is used, which determines whether the requested
objects are in the client-cluster.

This paper is organized as follows. In Section II, we describe
web caching and peer-to-peer lookup algorithm briefly. Sec-
tion III introduces the detail of the client-cluster storing method
for large objects. The simulation environment and the perfor-
mance evaluation are given in Section IV. We mention other
related works in Section V. Finally, the study is concluded in
Section VI.

II. BACKGROUND

A. Web Caching and Replacement Policy

The basic operation of web caching is simple. Web browsers
generate HTTP GET requests for Internet objects such as HTML
pages, images, or mp3 files. These are serviced from a local
web browser cache, web proxy caches, or an original content
server—depending on which cache contains a copy of the ob-
ject. If a cache closer to the client has a copy of the requested
object, bandwidth consumption is reduced and network traffic
decreases. Hence, the cache hit rate and byte hit rate should
be maximized and the miss penalty, which is the cost when a
miss occurs, should be minimized when designing a web cache
system.

If a web cache has infinite storage, caching objects poses few
problems, and a web cache achieves the maximum of hit rate and
byte hit rate. A web cache, however, has size-limited storage and
if a cache needs space for new objects, it evicts the other cached
objects which are deemed not useful for cache performance. In
this case, the policy of selecting object is a replacement policy.

Many replacement policies have been proposed [1]–[5]; gen-
erally these evict large objects first when new objects enter. A
number of these policies do not store large objects at all. As a
result of these policies, a web cache stores more objects, the hit
rate increases and the number of access links between the insti-
tution and its upstream ISP decreases. However, because these
policies evict large objects earliest, the large objects are not

cached for extended periods of time, and there is little chance for
these objects to be hit in the cache. Although a web cache can
achieve a high hit rate with these policies, it can not achieve high
byte hit rate, thus wasting further upstream bandwidth while re-
trieving large objects. If the requests of large objects increase,
this degradation can be extreme.

Even if local storage for the web cache increases due to the
caching of large objects, it is only a temporary solution, requir-
ing additional costs related to cache management, such as new
hardware and reconfigurations. In other words, this approach is
not viable; nor is it scalable.

B. Peer-to-Peer Lookup

Peer-to-peer systems are distributed systems without any cen-
tralized control or hierarchical organization, where the software
running at each node is equivalent in functionality; this includes
redundant storage, selection of nearby servers, anonymity,
search, and hierarchical naming. Among these features, lookup
for data is an essential functionality for peer-to-peer systems.

A number of peer-to-peer lookup protocols have been re-
cently proposed, including Pastry, Chord, CAN, and Tapestry
[6]–[9]. In a self-organizing and decentralized manner, these
protocols provide a DHT that reliably maps a given object key
to a unique live node in the network. Because DHT is made by a
hash function that balances load with high probability, each live
node has the same responsibility for data storage and query load.
If a node wants to find an object, a node simply sends a query
with the object key corresponding to the object to the selected
node determined by the DHT. Typically, the length of routing is
about O(log n), where n is the number of nodes. According to
these properties, peer-to-peer systems balance storage and query
load, transparently tolerate node failures and provide efficient
routing of queries.

III. PROPOSED IDEA

A. Overview

As was described in the previous section, a web proxy cache
evicts large objects first in order to obtain free space, which is
then used to store a new cached object. This feature reduces
cache performance, especially the byte hit rate. Accordingly,
large objects are the main obstacles of cache performance. To
address this, the residual resources of clients for a proxy cache
are exploited. To be precise, any client who wants to use the
proxy cache provides small resources; instead of this being the
local storage of the user’s browser caches, it is what is known
as residual storage. The proxy cache uses these additional re-
sources to store large objects. This group of client residual re-
sources is termed a client-cluster.

The client-cluster is utilized as exclusive storage for large ob-
jects. Generally a web proxy cache stores all requested objects
in the local storage, but in the proposed system, local storage by
the proxy cache involves only small objects while large objects
are stored in the client-cluster which is distributed among the
clients. From another vantage point, the size of a requested ob-
ject can be said to decide its cache location. If the size is small,
the proxy cache assign the object to its local cache, otherwise,



KIM AND PARK: REDUCING OUTGOING TRAFFIC OF PROXY CACHE BY USING... 3

it allocates the object to the client-cluster. When a proxy cache
receives a request, it checks its local storage. If a hit occurs, it
returns the requested object; otherwise, it sends a lookup mes-
sage to the client-cluster and this message is forwarded to the
client having the responsibility to store the object. By maintain-
ing these activities, the proxy cache system can store a greater
number of large objects for relatively a longer time without in-
curring a high cost, making it possible to achieve the high byte
hit rate and further save outgoing bandwidth. Moreover, as the
proxy cache does not need to process large objects, it can store
additional small objects; thus, the hit rate of the system also in-
creases.

B. Management of Client-Cluster

In the proposed scheme, a proxy cache uses the resources of
clients that are in the same network. Generally, if a peer wants
to use the resources of other peers, the requesting peer should
have information about the others. This approach is viable when
these other peers are available and reliable. However, the client
membership can be very large and it changes dynamically. If the
proxy cache manages the states of all clients, too much overhead
can be created to effectively manage the client information, and
complex problems such as fault-tolerance, consistency, and scal-
ability can arise. In consideration of these issues, in this study,
the proxy cache is established such that it has no information
about the clients. Furthermore, the client-cluster manages itself.

The client-cluster is designed using DHT-based peer-to-peer
protocol [6], [7]. To use this protocol, each client needs an ap-
plication called Station. Station is not a browser or a browser
cache, but is instead a management program enables the use of
client resources for the proxy cache. A client can not use the
resources of a Station directly; a proxy cache sends requests is-
sued from clients to Stations in order to use the resources of a
client-cluster. When a Station receives a request from a proxy
cache, it forwards the request to another Station or verifies the
presence or absence of the requested objects. Each Station has
a unique node key and a DHT. The unique node key is gener-
ated by computing the SHA-1 hash of a client identifier, such as
an IP address or an Ethernet address, and the object key is ob-
tained by computing the SHA-1 of the corresponding URL. The
DHT describes the mapping of the object keys to responsible
live node keys for the efficient routing of request queries. This
is similar to a routing table in a network router. A Station uses
this table with the key of the requested object to forward the re-
quest to the next Station. Additionally, the DHT of a Station has
the keys of neighbor Stations that are numerically close to the
Station, similar to the leaf nodes in PASTRY or the successor
list in CHORD.

The basic operation of the lookup in a client-cluster is shown
in Fig. 1. When a proxy cache sends a request query to one
Station of a client-cluster, the Station obtains the object key of
the requested object and selects the next Station according to
the DHT and the object key. Finally, the home Station, a Sta-
tion having the numerically closest node key to the requested
object key among all live nodes at this point, receives the re-
quest and verifies the presence or absence of the object in the
local cache. If a hit occurs, the home Station returns the object
to the proxy cache; otherwise, it returns only a null object. In

Fig. 1. Basic lookup operation in the client-cluster. In this figure, total
hop count is 3 for an object.

Fig. 1, the node whose key is 07200310 is the home Station for
the object whose key is 07100470. The cost of this operation is
typically O(log n), where n is the total number of Stations. If
1,000 Stations exist, the cost of the lookup is 3 (approximately),
and if there are 100,000 Stations, the cost is nearly 5. As the
RTT for any server on the Internet from one client is 10 or 100
times larger than that for another client in the same network, the
latency for an object can be reduced by 2 or 20 times when the
object is obtained from the client-cluster.

The client-cluster can cope with frequent variations in client
membership by using this protocol. Though clients dynamically
join and leave, the lazy update that manages the small amount
of information used by membership changes does not interfere
with the lookup operation of this protocol. When a Station joins
the client-cluster, it sends a join message to any one Station in
the client-cluster and receives new DHT, and other Stations up-
date their DHT for the new Station slowly. Conversely, when
a Station leaves or fails, other Stations having a DHT mapping
with the departing Station slowly detect the failure of the de-
parted station and repair their DHT. According to these proce-
dures, the client-cluster is self-organizing and fault-tolerant.

All Stations have approximately the same amount of objects,
as the DHT used for the lookup operation provides a degree of
natural load balance. Moreover, the object range, which is man-
aged by one Station, is determined by the number of live nodes.
That is, if there are few live nodes, the object range is large;
otherwise, it is small. Due to this, when the client membership
changes, the object range is resized automatically and the home
Stations for every object is changed implicitly.

C. Storage for Large Sized Objects

In the proposed system, large objects are stored in the client-
cluster. Essentially, the client-cluster stores the object in the cor-
responding node which has the closest node key numerically to
the object key. However, each node in the client-cluster supports
residual resources that are not used by a node and that are too
small to facilitate the storing of the whole large object. To solve
this problem, the large object is broken into many small blocks
and these blocks are stored at many nodes. Each block has a
block key obtained by hashing the block itself, and the home
node that has the closest node key numerically to the block key
stores the block. According to this, all of blocks for a large ob-
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Fig. 2. The structure of our index based allocation method.

ject are distributed in the client-cluster and the storage overhead
for each client is reduced and balanced.

The index-based allocation method to store large objects is
used, as this method is simple, cost-effective functions simply
for random access. Fig. 2 shows the simple structure of the
proposed index-based allocation method. Initially, the object
header block is required. This contains basic information about
a large object, such as its URL, size and time of modification,
and index pointers, such as single, double, and triple indirect
index pointers. Direct index pointers are not used in the ob-
ject header block. In the general indexed method, a direct index
pointer is used to store small files and to avoid making unneces-
sary index blocks. In the client-cluster, however, the size of the
stored objects is large enough so that the overhead of the index
blocks can be neglected. The home node for a large object stores
this object header block instead of storing the object itself, and
manages these header blocks as a LRU list separately from the
data blocks.

An index pointer indicates an index block using an index
block key, which is the hashed value of the index block itself.
The index block is composed of a URL, as well as block point-
ers which address data using a data block key, and the range
of the block pointers. The data block is the leaf block of this
method, and stores the actual data chunk. Each data block has a
URL as well as a block number, which is assigned continuously
from the start of the object to the end.

The basic operation for requesting an object is shown in
Fig. 3. In this figure, Client A wants to acquire an object, and
sends a request to the proxy cache. The proxy initially checks its
local storage. If a hit occurs, the proxy cache returns the object
to Client A, the object either being a small object or the object
header block for a large object. Otherwise, if a miss occurs,
as the proxy cache has no information about the size of the re-
quested object, it sends a lookup message to the client-cluster. In
the figure as shown, Client B receives this lookup message first
and forwards it to Client C, with the message finally arriving at
Client D, which is the home node for the requested object. This
home node returns a lookup result indicating whether the node
has the object header block or not. If the object header block ex-
ists, the proxy stores the new header block in local storage and
returns a redirection class response, most likely the “302 Moved
Temporarily” response, to the Station of Client A. The Station
of Client A obtains the object header block from Client D and

Fig. 3. Operation of the client-cluster, when Client A wants to get an
object.

receives data blocks by using parallel connections. In the alter-
native case, if the header block does not exist at the home node,
the proxy sends a request to the origin server for the object and
obtains the object. After obtaining the object from the origin
server, if the size of the object is small, the proxy cache stores
this object in its local storage and returns the object to Client A;
otherwise, if it is a large object, the proxy cache only relays the
object, and Client A takes charge of storing this object by cre-
ating data blocks, index blocks and the object header block, and
distributes these blocks into the client-cluster.

D. Client-Cluster Summary

When the proxy misses the object in its local storage, it al-
ways checks the client-cluster without regard to the size of the
object. If the object is the large sized object, this overhead is
negligible, because the transfer overhead for the large sized ob-
ject is much more than this. However, if the object is the small
sized object, this lookup behavior is unnecessary and we get
additional latency by this behavior and waste the internal band-
width. To prevent this leakage, the proxy can have a summary
of the objects in the client-cluster.

We use Bloom filter [10] as the summary of the client-
cluster. A Bloom filter is a method for representing a set
A = a1, a2, · · · , an of n elements to support membership
queries. The idea is to allocate a vector v of m bits, initially
all set to 0, and then choose k independent hash functions,
h1, h2, · · · , hk, each with range 1, · · · ,m. For each element
a ∈ A, the bits at positions h1(a), h2(a), · · · , hk(a) in v are
set to 1. Given a query for b we check the bits at position
h1(b), h2(b), · · · , hk(b). If any of them is 0, then certainly b
is not in the set A. For a Bloom filter to represent the large sized
objects in the client-cluster, when the proxy cache obtains an
large sized object from the outside network, we insert a key for
the object to the summary; when the objects in the client-cluster
are removed we delete the key from the summary. Using to this
summary, we can know whether the requested object is in the
client-cluster or not and reduce the unnecessary lookups.
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E. n-chance Replacement on Client-Cluster

Each client whose key range does not overlap stores index
blocks and data blocks as an LRU list. This behavior distributes
a large object over the client-cluster very well, but if just one
block is missed, it corrupts the entire object. The missing of
a block occurs when a client leaves/fails or if a client evicts
blocks to store new blocks (replacements). It is possible to over-
come client failures or departures by applying a simple replica-
tion strategy to the p2p protocol for the client-cluster [7], [11].
To solve the problem of a replacement, blocks to be evicted
are transferred to other clients before they are evicted. When a
client evicts a block, it first regenerates a different block key by
hashing the block and an optional suffix having a random value.
In order to move the block correctly, the client finds the object
header block, index block and the block number of the evicted
block through the URL, and updates the block pointer with the
new block key. The possibility of moving blocks for one large
object is permitted until the number of chances is larger than a
threshold value, n. If a large object uses all n chances, all of the
blocks of the object are removed from the client-cluster. This is
known as the n-chance replacement policy.

F. Cache Refreshness

All cached objects can be refreshed to contain the latest data.
Typically, an (if modified since) IMS message is used to check if
an object has the latest content. If only the proxy cache is used,
the validation of the objects is checked by simple IMS methods.
If the proxy cache uses the client-cluster, the validations of the
objects in the client-cluster are checked only when the proxy
cache looks up these objects. According to this procedure, if a
proxy cache looks up an object, and the object is deemed to be
‘stale’ in the client-cluster, the home Station returns this object
with an IMS query and the proxy cache sends the IMS query
to the original server. If the object is not changed, the proxy
cache keeps the object. Alternatively, if the response confirms
that it has been modified and is now a new object, the proxy
cache stores this new object and sets the backup bit to 0 in order
to update this modification to the old object in the client-cluster
slowly. The backup bit is used to prevent the duplicated storage
of an object that is already in the client-cluster. If the backup
bit is set to 1, the proxy cache recognizes that the client-cluster
has the evicted object and drops this object immediately. If the
bit is set to 0, the proxy cache backs up the evicted object to the
client-cluster. When the proxy cache obtains the object from the
client-cluster, this bit is set to 1. When the object is refreshed
or returned from the original server, this bit is set to 0. Through
this scheme, the clients do not have to be concerned about the
‘staleness’ of objects.

G. Analysis of the Response Time

In web caching systems, the hit ratio, the byte hit ratio, and
the perceived response time are all important parameters. If the
response time is too long for the user to wait for a requested
object, though a p2p-based web caching systems achieves a high
hit ratio and a high byte hit ratio, these systems do not excel at
web caching.

To determine how the proposed system affects the response

time of web caching systems, simple models for the systems are
utilized. Additionally, a number of simplifying assumptions re-
garding the p2p substrate are made. First, the data is assumed to
be always available. Even if clients dynamically join or leave,
the availability of the data is preserved by the fault-tolerant p2p
substrate, and this fault handling does not affect response time.
Second, the total number of clients is assumed to remain static,
and the p2p lookup cost is limited and manages the average
value by the ideal formula, O(log N).

For a set of N identical clients interconnected by high speed
LANs whose bandwidth is Bi, the average RTT of the connec-
tion from a client to another client is Ri. There is a proxy cache
which is placed at the front end of the intra network. The band-
width of the outside link is Bo, and the average RTT of an inter-
net connection is Ro. The hit ratio of the web caching system
is Hr and the hit ratio of the proxy cache is Hpr, which does
not include hits from the client-cluster. The object size is S.
According to these parameters, simple models of the expected
latencies were made for the various p2p based web caching sys-
tems.

P = Hr(Ri + S/Bi)

+ (1 − Hr)(Ri + Ro + S/Bi + S/Bo)

PC = Hr(Hpr(Ri + S/Bi)

+ (1 − Hpr)(log(N)Ri + S/Bi))

+ (1 − Hr)(Ri + Ro + S/Bi + S/Bo).

These equations represent the response times for the sole
proxy cache (P ) and the web caching system with the client-
cluster (PC). In essence, when the miss occurs, additional
transfer time is needed to obtain the objects from outside links
which likely have less bandwidth (Bo) than what is available on
the inside links (Bi). Moreover, when the p2p method is used,
additional lookup time, such as log(N)Ri, is needed. In particu-
lar, though a hit may occur, the lookup time continues to elapse,
and this lengthens the response time. In order to overcome this
lookup overhead, both the hit ratio and the byte hit ratio should
be maximized, and the transfer time from outside links should be
reduced. When the web caching interacts with the client-cluster,
both the hit ratio and the byte hit ratio increase effectively, help-
ing reduce the external traffic. Consequently, the proposed new
system reduces the response time and encourages web caching
systems to adopt the p2p protocol. The results for the response
time are shown in Section IV-E.

IV. EVALUATION

In this section, the results of extensive trace-driven simula-
tions that evaluated the performance of the proposed system are
presented. The proxy cache simulator was designed to conduct
the performance evaluation. This simulator illustrates the be-
havior of a proxy cache and client-cluster. It was assumed that
the simulation of the behavior of a proxy cache was effective.
The proxy cache is error-free and does not store non-cacheable
objects such as dynamic data or control data. It is also assumed
that problems such as congestion and overflowing buffers do not
exist in the network. The size of a proxy cache ranges from
0.5 MB to 500 MB. Each client uses one Station having storage



6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 3, SEPTEMBER 2006

Table 1. Traces used in our simulation.

Traces Trace 1 Trace 2

Measuring day 2001.10.08 2001.10.09
Requests size 9.02 GB 11.66 GB
Objects size 3.48 GB 1.38 GB

Request number 699280 698871
Object number 215427 224104

Hit rate 69.19% 67.93%
Byte hit rate 63.60% 57.79%

of approximately 40 MB. The client-cluster stores large objects
whose size is larger than 1 MB, and the size of each block for
large objects is 32 kB. The basic replacement policy of every
cache is LRU. Moreover, to prepare the simulator the parame-
ters were measure after one million requests.

A. Traces Used

In the trace-driven simulations, traces from KAIST [12] were
utilized. KAIST uses a class B IP address for its network. Traces
from the proxy cache at KAIST contain over 3.4 million requests
in any single day. The simulations were run with traces from this
proxy cache starting in October, 2001. A number of the charac-
teristics of these traces are shown in Table 1. It is interesting
to note that these characteristics result when the cache size is
infinite. However, the simulations assume limited cache stor-
age, and ratios including the hit rate and byte hit rate can not
be higher than the infinite-hit rate and infinite-byte hit rate, de-
noting the hit rate and the byte hit rate, respectively, when an
infinite amount of storage is used.

B. Preliminary Inspection

In order to estimate the performance of the proxy cache, ob-
servations were made that measured the number of objects han-
dled by the proxy cache. If more hits occurred in a proxy cache,
the proxy cache was said to achieve better performance. How-
ever, every hit does not have same weight. A good example of
this is the byte hit. As the size of a requested object is vari-
able, both the large number of hits for a small object and a small
number of hits for a large object achieve similar byte hits. In
Fig. 4, the distribution of the hits which occurs in a proxy cache
is shown when the aforementioned traces are used, simulates a
proxy cache whose storage is infinite. The hits are distributed by
the size of a file. The maximum number of hits obtained takes
place for files whose sizes are approximately 256 Bytes, and for
a minimum value for 64 MB (approximate size) files. However,
in terms of the byte hit, the byte hits on files close to 64 MB are
larger than those for files of approximately 256 MB.

According to these results, if the general replacement algo-
rithms evict large objects to achieve a high hit rate, they must
sacrifice a high byte hit rate. To prevent this degradation of the
byte hit rate, it is necessary to store large objects in an exclusive
storage area having no relationship to the proxy cache. Large
objects can be stored in the client-cluster, which is composed of
clients and required no management cost for a proxy cache or
other storage

(a)

(b)

Fig. 4. Hit distribution in the proxy cache which has the infinite storage:
(a) Trace 1, (b) Trace 2.

Additionally, in Fig. 4, hits decrease rapidly for files of nearly
1 MB. This value, 1 MB, is used as the threshold value for se-
lecting large objects.

C. Hit Rate and Byte Hit Rate

Figs. 5 and 6 show comparisons of the hit rate and the byte
hit rate. The hit rate denotes the number of requests that hits the
proxy cache as a percentage of the total requests. The higher
the hit rate, the more requests the proxy cache can handle. The
original server must then handle a proportionally lighter load of
requests. The byte hit rate is the number of bytes that hits the
proxy cache as a percentage of total number of bytes requested.
A higher byte hit rate results in a greater decrease in network
traffic on the server side.

In the figures, proxy only indicates using only a proxy cache
and client-clustering denotes using the client-cluster to store
large objects. When the client-cluster is used, a hit not only oc-
curs at the local storage of a proxy cache but also at the client-
cluster. To separate the two types of hits, the notation pure hit is
used, indicating that the hit or byte hit rate obtained only at the
local storage of a proxy cache. The difference between client-
clustering and pure hit is that the hit or byte hit rate is measured
at the client-cluster only. Infinite is the rate when a proxy cache
has infinite storage.

Fig. 5 shows the effect of using a client-cluster for the hit
rate. When a client-cluster is used to store large objects, the
hit rate increases by nearly 10% regardless of the size of the
proxy cache. Moreover, in every case, the hit rate of a pure hit
is similar to the hit rate of client-clustering. Numerically, the
difference of these two values is approximately 0.2%. Most of
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(a)

(b)

Fig. 5. Hit rate comparison between only proxy cache and client-
clustering (100 clients): (a) Trace 1, (b) Trace 2.

hits occur in the local storage of a proxy cache, and few hits
(nearly 0.2%) occur in the client-cluster. When using a client-
cluster, the increasing effect of the hit rate is due to the increase
in the hit rate in the local storage of a proxy cache. That is, the
proxy cache does not handle large objects anymore, and it can
store a greater number of small objects. The hit rate of the whole
system then increases.

From the results of the hit rate, when the client-cluster is used,
only a small number of hits occur in the client-cluster for large
objects. However, these hits bring very large byte hits due to
the large sizes of the requested objects. In Fig. 6, when using a
client-cluster, the byte hit rate increases remarkably, achieving a
similar value to the infinite-byte hit rate while staying unrelated
to the proxy cache size. In contrast to the hit rate, the byte hit
rate of pure hit is much smaller than the rate of client-clustering
or the rate of proxy only. Chiefly in the result of Trace 2, the
byte hit rate obtained from the local storage of a proxy cache
is smaller by a third than the byte hit rate from a client-cluster.
According to this result, though a proxy cache achieves high
hit rate, small objects in the proxy cause the low byte hit rate.
This weak point can be managed by storing large objects in a
client-cluster. Consequently, to use a client-cluster, which is an
exclusive storage for large objects, not only a high hit rate is
achieved, but also a high byte hit rate. It is possible to preserve
and improve the performance of a proxy cache without incurring
expensive management costs.

D. Client Size Effect

Additionally, to show scalability of the proxy cache which
uses the client-cluster, it is assumed that every 100 clients make

(a)

(b)

Fig. 6. Byte hit rate comparison between only proxy cache and client-
clustering (100 clients): (a) Trace 1, (b) Trace 2.

0.35 million requests and that they simulate with a variable num-
ber of clients. The results are shown in Figs. 7 and 8, where
the cent n indicates the use of only a proxy cache whose size
is n hundreds MB, and the back n denotes that a proxy cache
and a client-cluster are used. In every case, the client-cluster is
used, the hit rate increases by nearly 10% and the byte hit rate
increases by nearly 10%–15%. It is interesting to note that in
Fig. 8(b), the byte hit rate achieves a high value regardless of
the number of clients. This indicates that a proxy cache using
a client-cluster copes with the growth of the client population
without incurring management costs; that is, the proposed sys-
tem is scalable.

Unlike Trace 2, even though the hit rate is high in Fig. 7(a), in
Fig. 8(a), the byte hit rate decreases drastically. The characteris-
tics of Trace 1 cause this appearance. In Table 1, the request size
of Trace 2 is nearly eleven times the object size; however, the re-
quest size of Trace 1 is only approximately three times the object
size. In other words, Trace 1 has many more requests for small
objects than it does for large objects, and the effect of storing
large objects is insufficient to compensate for the degradation of
the byte hit rate. In order to prevent this from happening, the
proxy cache should have some backup storage, such as the pro-
posed system in [13], and should maximize the hit rate for small
objects.

E. Response Time

Even though the hit rate and byte hit rate increase by using the
client-cluster, if it causes any harm to the response time, it is not
viable for the web caching system. The client-cluster has a small
number of factors which can increase the response time, such as
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(a)

(b)

Fig. 7. Hit rate comparison with various client number: (a) Trace 1, (b)
Trace 2.

the lookup cost. The lookup cost of the client-cluster is heavy, as
the lookup of the p2p substrate requires multiple routing hops.
General DHT-based p2p protocols need O(log N) messages for
a lookup, where N is the number of live nodes. To analyze how
the client-cluster affects the response time, the response time of
each request is measured using the network model which was
introduced in Section III-G. In Fig. 9, the comparison of the
average response time is shown. It is surprising that the client-
cluster decreases the response time by about 20 ms. Moreover, if
more clients join the client-cluster, the web caching system can
further reduce the response time. The reason for this result has
to do with efficient caching for large objects. When only large
objects are requested, the heavy lookup cost adds to the response
time. However, the number of the requests for large objects is
not many, and most of these hit on the client-cluster. According
to this, the client-cluster acting as the exclusive storage for large
objects can help reduce the response time.

F. Client Load

The client loads are examined, including the request number,
storage size, and stored object, in order to verify that the client-
cluster balances storage and requested queries. Table 2 shows
a summary of the supported storage size, the requested number
and the requested byte of clients. According to this table, in or-
der to store entire large objects in the client-cluster, each client
should supply about 10–20 MB of storage to the proxy cache
and handle about 1000–4000 requests per day. These loads are
enough for any client to handle considering today’s technology,
and if the number of clients is 300 or more, these loads are neg-
ligible. The deviation value for each metric is less than 4%, and

(a)

(b)

Fig. 8. Byte hit rate comparison with various client number: (a) Trace 1,
(b) Trace 2.

(a)

(b)

Fig. 9. Response time comparison between the only proxy cache and
client-clustering: (a) Trace 1, (b) Trace 2.

each client receives roughly the same load. Furthermore, when
the client number increases, the load of each client decreases.
The scalability of the proposed system is verified according to
these results.
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Table 2. Summary of client loads for Trace 1 with the 200 MB proxy.

Client number Mean size Max size Dev.

100 20967kB 21659 kB 1.65
200 10586 kB 11141 kB 2.48
300 7081 kB 7372 kB 1.98

Mean req. Max req. Dev.

100 3662 3899 2.12
200 1842 2001 2.99
300 1230 1375 4.1

Mean BReq. Max BReq. Dev.

100 120025 kB 127762 kB 2.1
200 60374 kB 65568 kB 2.98
300 40327 kB 45056 kB 4.09

V. RELATED WORK

Many peer-to-peer applications such as Napster, Kazza,
and Morpheus have become popular. Additionally, large area
file systems using peer-to-peer have been proposed, including
PAST [14], CFS [11], and Oceanstore [15]. The target of these
systems, however, is a wide area network, and they address is-
sues of the characteristics of web objects, such as size, popular-
ity, and update frequency.

A similar proposal for the outlined approach appears in [13]
and [16]. The web browser caches of clients themselves are
used in [16]. This approach does not consider large objects,
and the load of each client is not balanced well. Moreover, when
the availability of clients is asymmetric, some of the clients de-
crease the total performance of the cache system. In [13], the
residual resources of clients are used as backup storage of the
proxy cache and the hit rate is maximized, making it similar
to the infinite-hit rate. [17] shows a new approach which uses
‘superclients,’ which makes the cluster of clients hierarchical in
structure. However, this proposed system is affected by large
objects. Therefore, they cannot achieve high byte hit rate and
cannot balance the load in regards to the byte requests. More-
over, in [18], files are cut into pieces of fixed sizes for parallel
downloading, similar to the proposed approach for a large ob-
ject. While this approach focuses the point of the improvement
on the download time, the proposed system here considers not
only the download time but also system performance such as the
hit rate, as well as the byte hit rate and storage utilization.

VI. CONCLUSION

In this paper, the peer-to-peer client-cluster is proposed and
evaluated, which is used as exclusive storage for a web proxy
cache. The proxy cache with this client-cluster achieves not only
a high hit rate but also a high byte hit rate. This behavior reduces
the outgoing traffic occurring over congested links and improves
the performance of the connections to the outside world. More-
over, the client-cluster supported by the clients using the proxy
cache is highly scalable, and the proxy requires only a low ad-
ministrative cost. With this system, even if the clients take on a
load, this load is verified on a range of real workloads to be low

and well balanced. Additionally, if this client-cluster is used not
only as the exclusive storage of a proxy cache but also as the
backup storage of a proxy cache, a high value can be achieved
for both the hit rate and the byte hit rate, which is similar to the
value when the infinite cache is used.
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